Abstract
As a result of the research flexible heat-insulating materials were developed based on basalt fiber with increased effectiveness, which can be achieved due to directed fiber microstructure forming through fusion modification. It is known that chemical composition of initial fusion not identically influences on physical and chemical and mechanical properties of basaltic fibres. Structural descriptions of fusion and basaltic fibre got from him appear main factors the nearer, than high speed of cooling. This index mainly depends on such constituents: a) ambient temperatures; b) coefficient of heat conducting; c) heat conducting of fusion; d) areas of surface. By researches influence of temperature of basaltic fusion was shown on the structure of fibres. Structural characteristics of the basalt fiber (number of active zones, coefficient of its distribution on the basalt fiber surface, as well as a correlation of three groups of active zones) depend on rheological properties of basal fusion, speed of drawing through the die plate and cooling speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.