Abstract

Production of lactic acid from paper sludge was studied using thermophilic Bacillus coagulan strains 36D1 and P4-102B. More than 80% of lactic acid yield and more than 87% of cellulose conversion were achieved using both strains without any pH control due to the buffering effect of CaCO 3 in paper sludge. The addition of CaCO 3 as the buffering reagent in rich medium increased lactic acid yield but had little effect on cellulose conversion; when lean medium was utilized, the addition of CaCO 3 had little effect on either cellulose conversion or lactic acid yield. Lowering the fermentation temperature lowered lactic acid yield but increased cellulose conversion. Semi-continuous simultaneous saccharification and co-fermentation (SSCF) using medium containing 100 g/L cellulose equivalent paper sludge without pH control was carried out in serum bottles for up to 1000 h. When rich medium was utilized, the average lactic acid concentrations in steady state for strains 36D1 and P4-102B were 92 g/L and 91.7 g/L, respectively, and lactic acid yields were 77% and 78%. The average lactic acid concentrations produced using semi-continuous SSCF with lean medium were 77.5 g/L and 77.0 g/L for strains 36D1 and P4-102B, respectively, and lactic acid yields were 72% and 75%. The productivities at steady state were 0.96 g/L/h and 0.82 g/L/h for both strains in rich medium and lean medium, respectively. Our data support that B. coagulan strains 36D1 and P4-102B are promising for converting paper sludge to lactic acid via SSCF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call