Abstract

In the present work, bionanocomposites based on bacterial cellulose (BC) obtained from alternative sources (cashew juice and sisal liquid waste) and hydroxyapatite (HA) were developed. BC–HA composites were prepared through alternate immersion in CaCl2 and Na2HPO4 solutions. Cellulose was successfully produced from the alternative sources of media without the need for additional supplementation and HA crystals that homogeneously precipitated onto the BC surface. The Ca/P ratio ranged from 1.53 to 1.58, indicating the presence of calcium-deficient HA in the composites; this is a phase similar to biological apatite. After immersion into synthetic body fluid, the HA layer formed on the surface of pure BC and the composites, attesting the material’s bioactivity. Moreover, apatite deposition on the composites was up to three times higher than observed on pure cellulose with no significant desorption of apatite from the composites. These results support that the BC derived from agroindustrial wastes have potential to produce nanocomposites of cellulose/HA for use in bone tissue regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call