Abstract

Bacterial cellulose holds great promise for tissue engineering, but its application is greatly limited due to the lack of large pores and poor cell affinity. In this study, macroporous bacterial cellulose was fabricated through the dissolution of gelatin microspheres, which were incorporated with bacterial cellulose during bacterial cellulose fabrication. Then, gelatin was immobilized onto bacterial cellulose surface via procyanidins crosslinking. The results confirmed that the scaffolds possessed interconnected macroporous structure, high porosity, good water uptake ability, and good mechanical properties. The results of evaluation of cells showed that cells migrated to the inner of macroporous affinitive bacterial cellulose and displayed better spreading as well as proliferation than that on pure bacterial cellulose surfaces. The macroporous affinitive bacterial cellulose show potential as a scaffold for tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.