Abstract

Steam reforming of ethanol, in simulated MCFC operative conditions was investigated over MgO supported Ni and Co catalysts. Ni/MgO catalysts exhibit higher activity and selectivity to H 2 than Co/MgO catalysts because of the lower tendency of Ni to oxidize during reaction and to promote carbon monoxide methanation and ethanol decomposition reactions. Coke formation was strongly depressed due to the benefits gained through the use of basic carrier (MgO). Endurance tests carried out at low gas hourly space velocity (10,000 h −1) for 630 h showed that Ni/MgO catalyst possesses adequate characteristics to be proposed as an efficient catalytic system for the production of hydrogen for MCFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.