Abstract

The occasional direct transmission of the highly pathogenic avian influenza A virus H5N1 (HPAI H5N1) and H7N9 to humans and their lethality are serious public health issues and suggest the possibility of an epidemic. However, our molecular understanding of the virus is rudimentary, and it is necessary to study the biological properties of its envelope proteins as therapeutic targets and to develop strategies to control infection. We developed a solid viral pseudotyped particle (pp) platform to study avian influenza virus, including the functional analysis of its hemagglutinin (HA) and neuraminidase (NA) envelope glycoproteins, the reassortment characteristics of the HAs and NAs, receptors, tropisms, neutralizing antibodies, diagnosis, infectivity, for the purposes of drug development and vaccine design. Here, we describe an experimental procedure to establish pps with the envelope glycoproteins (HA, NA) from two influenza A strains (HAPI H5N1 and 2013 avian H7N9). Their generation is based on the capacity of some viruses, such as murine leukemia virus (MLV), to incorporate envelope glycoproteins into a pp. In addition, we also detail how these pps are quantified with RT-qPCR, and the infectivity detection of native and mismatched virus pps depending on the origin of the HAs and NAs. This system is highly flexible and adaptable and can be used to establish viral pps with envelope glycoproteins that can be incorporated in any other type of enveloped virus. Thus, this viral particle platform can be used to study wild viruses in many research investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call