Abstract
Metabolic stress is a phenomenon often discussed in conjunction with recombinant protein production in Escherichia coli. This investigation shows how heterologous protein production and the presence of host cell proteases is related to: (1) Isopropyl-beta- D-thiogalactopyranoside (IPTG) induction, (2) cell-mass concentration at the time of induction, and (3) the presence of metabolites (glutamic acid or those from tryptone soy broth) during the post-induction phase of high cell density fed-batch cultivations. Two thermostable xylanase variants and one thermostable cellulase, all originating from Rhodothermus marinus, were expressed in E. coli strain BL21 (DE3). A three-fold difference in the specific activity of both xylanase variants [between 7,000 and 21,000 U/(g cell dry weight)], was observed under the different conditions tested. Upon induction at high cell-mass concentrations employing a nutrient feed devoid of the metabolites above, the specific activity of the xylanase variants, was initially higher but decreased 2-3 h into the post-induction phase and simultaneously protease activity was detected. Furthermore, protease activity was detected in all induced cultivations employing this nutrient feed, but was undetected in uninduced control cultivations (final cell-mass concentration of 40 g/l(-1)), as well as in induced cultivations employing metabolite-supplemented nutrient feeds. By contrast, maximum specific cellulase activity [between 700 and 900 U/(g cell dry weight)] remained relatively unaffected in all cases. The results demonstrate that detectable host cell proteases was not the primary reason for the decrease in post-induction activity observed under certain conditions, and possible causes for the differing production levels of heterologous proteins are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.