Abstract

The long-lived xenon isomers 129mXe and 131mXe are of interest for the GAMMA-MRI project, which aims at developing a novel imaging modality based on magnetic resonance of polarized unstable tracers. Here, we present the steps leading to and following the production of these two isomers via neutron irradiation of highly-enriched 128Xe and 130Xe gas samples at two high-flux reactors, the High-Flux Reactor (Réacteur à haut flux, RHF) at the Institut Laue-Langevin (ILL) and the MARIA reactor at the National Centre for Nuclear Research (NCBJ). We describe the experimental setups and procedures used to prepare the stable xenon samples, to open the irradiated samples, and to transfer xenon isomers into reusable transport vials. The activity of 129mXe and 131mXe was measured to be in the range of tens of MBq per sample of 0.8(1)mg, and was proportional to thermal neutron flux density. A small activity of unstable contaminants was also visible in the samples, but their level is not limiting for the GAMMA-MRI project’s objectives. In addition, the minimum thermal neutron flux density required to produce 129mXe and 131mXe sufficient for the project could be also determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call