Abstract

This work reports on the production of Cu-Hf-Ti bulk glassy composites through a powder metallurgical route, i.e. by mechanical alloying and subsequent spark-plasma sintering. Powders of Cu60Hf30Cu10 and Cu60Hf25Ti15 composition were prepared using a high-energy planetary ball-mill. Both alloys nearly showed a fully amorphous structure with only a small fraction of residual HCP Hf grains left after 50 h of milling. Differential scanning calorimetry (DSC) analyses of the milled glassy powder revealed a two-stage crystallization process for both compositions. However, the released crystallization enthalpy was substantially larger for the Cu60Hf25Ti15 alloy than for the Cu60Hf30Ti10 alloy, suggesting that the former comprises a higher fraction of the amorphous phase than the latter. Both powders showed distinct glass-transition with a large super-cooled liquid region. Consolidation of Cu60Hf25Ti15 powder was carried out by means of spark-plasma sintering at applied pressures of 200 and 500 MPa, choosing a sintering temperature within the super-cooled liquid region (T = 753 K). The sintered compacts exhibited some pores and interparticle boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.