Abstract

In this study, we attempted to develop a cost-effective activated carbon (AC) from local tea waste. AC was synthesized via a pyrolysis process and used it to treat tannery waste-water. A methylene blue adsorption test was then conducted to determine the highest adsorption capability of synthesized AC. The crystal structure and microstructure of AC were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). An average crystallite size of 15 nm was measured from XRD while sub-nano meter scale particle size was confirmed from SEM images. Produced AC was then used for the treatment of industrial waste-water that results in a reduction of about 89–97% chromium from water. In addition, other physical parameters (Biochemical oxygen demandchemical oxygen demand turbidity, conductivity, Cr content) were also significantly reduced from the waste-water. These results suggest the use of AC for the treatment of industrial as well as domestic waste-water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.