Abstract

This study performed in-situ microwave pyrolysis of plastic waste into hydrogen, liquid fuel and carbon nanotubes in the presence of Zeolite Socony Mobil ZSM-5 catalyst. In the presented microwave pyrolysis of plastics, activated carbon was used as a heat susceptor. The microwave power of 1 kW was employed to decompose high-density polyethylene (HDPE) and polypropylene (PP) wastes at moderate temperatures of 400–450 °C. The effect of plastic composition, catalyst loading and plastic type on liquid, gas and solid carbon products was quantified. This in-situ CMP reaction resulted in heavy hydrocarbons, hydrogen gas and carbon nanotubes as a solid residue. A relatively better hydrogen yield of 129.6 mmol/g as a green fuel was possible in this process. FTIR and gas chromatography analysis revealed that liquid product consisted of C13+ fraction hydrocarbons, such as alkanes, alkanes, and aromatics. TEM micrographs showed tubular-like structural morphology of the solid residue, which was identified as carbon nanotubes (CNTs) during X-ray diffraction analysis. The outer diameter of CNTs ranged from 30 to 93 nm from HDPE, 25–93 nm from PP and 30–54 nm for HDPE-PP mixure. The presented CMP process took just 2–4 min to completely pyrolyze the plastic feedstock into valuable products, leaving no polymeric residue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.