Abstract

Aldehydes represent an intermediate redox state of organic carbon and can be precursors to carboxylic acids via disproportionation. A model aldehyde, benzaldehyde, was subjected to hydrothermal experiments (250–350 °C, saturation pressure) to assess the kinetics and mechanisms of the reactions leading to carboxylic acids. The concentration dependence demonstrates the kinetics are second-order in benzaldehyde, consistent with a disproportionation reaction, which is reminiscent of the base-promoted Cannizzaro reaction known at lower temperatures. Arrhenius parameters for these rate constants trend well with data from most, but not all, previous studies for the reaction under supercritical conditions. The rate constants yielded an entropy of activation (ΔS‡) of −161 J mol–1 K–1, consistent with a bimolecular transition state at the rate-limiting step. Experimental yields of benzoic acid and benzyl alcohol were not equal, unlike what is expected for the disproportionation reaction. A kinetic model that includ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.