Abstract
Production of carboxylic acids (including 12 types of benzene carboxylic acids (BCAs) and small-molecule fatty acids) from lignite via oxidation has been widely studied, but few studies addressed the relationship between distribution of BCAs and structure of lignite. This work studies alkali-oxygen oxidation of Xiaolongtan lignite and distributions of BCAs with 13C NMR as well as the relationship between the distributions of BCAs and the lignite structures. The results indicate that the dominant aromatic structures in the lignite are naphthalene and benzene with a mole ratio of around 3, and an alkyl-substituted degree of aromatic rings of 0.359. These structure characters determine that the yields of benzene tricarboxylic acids, benzene tetracarboxylic acids, benzene pentacarboxylic acid and mellitic acid are more than those of other BCAs. In the oxidation process, the organic matter of lignite is first converted to humic acids (HAs), then to water soluble acids, and last to carboxylic acids. The last conversion step is the rate-controlling step. Analyses of the residues and HAs indicate that C–O bond of lignite is easily cleaved. The aromatic structures (except condensed aromatic rings) are easily depolymerized from lignite, but the condensed aromatic rings and long alkyl chains are difficult to be oxidized. With an increase in oxidation time, in the residues, the contents of aromatic structures decrease, but the contents of condensed aromatic rings and long alkyl chains both increase. While in HAs, the contents of condensed aromatic rings increase, but the average methylene chain length (Cn) decreases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.