Abstract

Capsaicinoids are mostly derived from chili peppers and have widespread applications in food, feed, and pharmacology. Compared with plant extraction, the use of microbial cell factories for capsaicinoids production is considered as a more efficient approach. Here, the biotransformation of renewable plant oil and vanillylamine into capsaicinoid nonivamide was investigated. Nonivamide biosynthesis using nonanoic acid and vanillylamine as substrates was achieved in Escherichia coli by heterologous expression of genes encoding amide-forming N-acyltransferase and CoA-ligase. Through increasing nonanoic acid tolerance of chassis cell, screening key enzymes involved in nonivamide biosynthesis and optimizing biotransformation conditions, the nonivamide titer reached 0.5 g/L. By further integrating a route for conversion of oleic acid to nonanoic acid, nonivamide biosynthesis was finally achieved using olive oil and vanillylamine as substrates, yielding a titer of approximately 10.7 mg/L. Results from this study provide valuable information for constructing highly efficient cell factories for the production of capsaicinoid compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.