Abstract

This article explores the feasibility of producing biohydrogen from microalgae following their use in wastewater purification from food industry facilities and the removal of high levels of carbon dioxide (CO2) from the air. The authors investigated various methods for disrupting the cell membranes of microalgae and their impact on biohydrogen yield. The microalgae biomass obtained after wastewater and air purification underwent pre-treatment using physicochemical and chemical methods, including microwave radiation, acid treatment, and thermal treatment. The highest hydrogen production occurred during thermal and acid treatments of biomass with the addition of starch (44.24 mL/L of suspension). The use of microwave radiation for processing did not yield significant results. A comparison of the biohydrogen values obtained from untreated and treated biomass revealed that treatment enhances biohydrogen yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.