Abstract

The depletion of global fossil fuel reserves and environmental concerns associated with its production are driving the shift towards biomass as a renewable energy source, which can be converted into biofuels and biogas for diverse energy applications. Hence, we conducted pyrolysis experiments on plantain stalk samples to examine the impact of pyrolysis temperature and heating rate on product yields and their chemical compositions. Optimal conditions for maximum bio-oil yield (22%) were identified at a torrefaction pre-treatment temperature of 300℃. The highest biochar yield (16.88%) was achieved at 300℃, while the highest biogas yield (61.85%) was observed at 150℃. Detailed elemental, proximate, and ultimate analyses of the bio-oil were performed, and its chemical composition was analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The chromatographic and spectroscopic studies confirmed that bio-oil derived from plantain stalk is a promising renewable fuel and chemical feedstock, indicating its potential in sustainable energy applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call