Abstract

The production of bioethanol by co-culture of cellulolytic and xylanolytic bacteria isolated from agro-waste-impacted soil through simultaneous saccharification and co-fermentation (SSCF) of steam-exploded bagasse was investigated. The cellulolytic (VCE-19) and xylanolytic (VXE-41) isolates were screened using the Congo Red Plate Method. The DNS method was used in the determination of reducing sugar content. Chemical analysis of the sugarcane bagasse was determined using standard methods. The bagasse was subjected to steam explosion to reduce lignin content and enhance cellulose availability. Mean proximate composition analysis of the bagasse showed total carbohydrate and lignin content (% dry weight) of 70.3 ± 1.9 and 19.2 ± 1.2 before pretreatment and 85.4 ± 2.33 and 4.2 ± 0.44 after pretreatment, respectively. Phylogenetic analysis based on partial sequence of the 16S rRNA gene classified VCE-19 and VXE-41 as Bacillus cereus GBPS9 and Bacillus thuringiensis serovar kurstaki HD1, respectively. The sequences obtained from these isolates have been submitted to GenBank and accession numbers (KT350986.1 for VXE-41 and KT318371.1 for VCE-19) assigned to them. The result of the optimization of cultural conditions of the bacterial co-culture revealed optimum cellulase production at the following conditions: temperature, 40 °C; pH, 7; substrate concentration, 4.0 % (w/v); inoculum concentration, 4 % (v/v) and when yeast extract was used as nitrogen source. The gas chromatography–mass spectrometry (GC–MS) analysis of the fermentation broth detected the following components: acetone (3.49 g/L), ethylacetate (8.75 g/L), ethanol (19.08 g/L), N-propanol (4.96 g/L), isobutanol (3.73 g/L) and acetic acid (6.53 g/L). This study has demonstrated the production of significant quantity of ethanol by a co-culture of B. cereus GBPS9 and B. thuringiensis serovar kurstaki HD1 through SSCF of steam-exploded bagasse. Efficient bioethanol production from bagasse can help solve the need for alternative source of energy and the crisis that results from bioethanol production from food and feed crops.

Highlights

  • The production of bioethanol by co-culture of cellulolytic and xylanolytic bacteria isolated from agrowaste-impacted soil through simultaneous saccharification and co-fermentation (SSCF) of steam-exploded bagasse was investigated

  • The main aim of this study was to produce ethanol through simultaneous saccharification and co-fermentation of pretreated sugarcane bagasse using a co-culture of Bacillus spp

  • Chemical analysis of sugarcane bagasse The method described by Milne et al (1992) was used to determine the dry matter, acid detergent fibre (ADF) and neutral detergent fibre (NDF) contents of the sugarcane bagasse

Read more

Summary

Introduction

The production of bioethanol by co-culture of cellulolytic and xylanolytic bacteria isolated from agrowaste-impacted soil through simultaneous saccharification and co-fermentation (SSCF) of steam-exploded bagasse was investigated Fossil energy sources such as oil, coal, and natural gas have contributed to the drastic increase in the level of greenhouse gases in the Earth’s atmosphere (Ballesteros et al 2006). The gazette contains policies and approaches to be taken by the federal government alongside its partners for efficient blending of ethanol and petrol in Nigeria. This gazette calls on all stakeholders in the energy sector to research into ways of ensuring efficient indigenous production of bioethanol. From this vantage point, has large natural resources to support the development and even commercialization of bioethanol

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call