Abstract
3-Hydroxytyrosol (HT) is a super antioxidant possessing many physiological advantages for human health. However, the extraction of natural HT from olive (Olea europaea) is expensive, and its chemical synthesis presents an environmental burden. Therefore, microbial production of HT from renewable sources has been investigated over the past decade. In the present study, we modified the chromosome of a phenylalanine-producing strain of Escherichia coli to generate an HT-producing strain. The initial strain showed good HT production in tests performed by test tube cultivation, but this performance did not transfer to jar-fermenter cultivation. To grow well and achieve higher titers, the chromosome was further engineered and the cultivation conditions were further modified. The final strain achieved a higher HT titer (8.8 g/L) and yield (8.7%) from glucose in the defined synthetic medium. These yields are the best reported to date for the biosynthesis of HT from glucose.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have