Abstract

Acetate can be used as carbon feedstock for the production of 3-hydroxypropionic acid (3-HP), but the production level was low due to inefficient cell growth on acetate. To better utilize acetate, a two-stage strategy, whereby glucose is used for cell growth and acetate for 3-HP formation, was attempted. Dissected malonyl-CoA reductase of Chloroflexus aurantiacus, alone or along with acetyl-CoA carboxylase and/or transhydrogenase, was overexpressed, and by-products formation pathway, glyoxylate shunt (GS) and gluconeogenesis were modified. When GS or gluconeogenesis was disrupted, cell growth on glucose was not hampered, while on acetate it was completely abolished. Consequently, 3-HP production, at production stage, were low, though 3-HP yield on acetate was increased, especially in the case of aceA deletion. In two-stage bioreactor, strain with upregulated GS produced 7.3 g/L 3-HP with yield of 0.26 mol/mol acetate. This study suggests that two-stage cultivation is a good strategy for 3-HP production from acetate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.