Abstract

In this study, tailored made open-cell calcium phosphate foams reinforced with alumina were fabricated by employing a dissolution-sintering process, using crystalline raw cane sugar as a water-leachable material. The effect of the alumina addition in the 3D morphology and in the microstructure of the produced calcium phosphate-based foams was examined. Preliminary in vitro bio-dissolution studies were performed to obtain an initial indication for the suitability of these composite bioceramic foams as implant materials. The mechanical properties of the produced composite calcium phosphate foams were also evaluated. It was found that the addition of small amount of alumina (5 wt%) resulted in a microstructural alteration affecting both the 3D geometry of the produced bioceramic foams and the morphology of the precipitated apatite during the biodegradation tests. The addition of alumina resulted in considerable enhancement of the mechanical strength of the bioceramic foam when the porosity was above 70%. The produced calcium phosphate-based composite foams (with alumina reinforcement) are suitable for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.