Abstract

Metal foams are used as absorbers for kinetic energy but predominantly, they have only been investigated under quasi-static load-conditions. Coating of open-cell metal foams improves the mechanical properties by forming of Ni/Al hybrid foam composites. The properties are governed by the microstructure, the strut material and geometry. In this study, the strain-rate effects in open-cell aluminium foams and new Ni/Al composite foams are investigated by quasi-static compression tests and low-velocity impact. For the first time, drop weight tests are reported on open-cell metal foams, especially Ni/Al composite foams. Furthermore, size-effects were evaluated. The microstructural deformation mechanism was analysed using a high-speed camera and digital image correlation. Whereas pure aluminium foams are only strain-rate sensitive in the plastic collapse stress, Ni/Al foams show a general strain-rate sensitivity based on microinertia effects and the rate-sensitive nano-nickel coating. Ni/Al foams are superior to aluminium foams and to artificial aluminium foams with equal density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.