Abstract
Abstract It is complex and obviously different for the production characteristics of CO2 water-alternating-gas (WAG) flooding in tight reservoir and influenced by quite a few factors. Therefore, the prediction of oil production is a key matter of efficient development of CO2 WAG to be solved in tight reservoirs. In order to cope with this issue, in this paper, the production characteristics of CO2 WAG flooding are analyzed and classified in tight oil reservoir of block A as an example. On this basis, properties of reservoir, fracture factors, and operational factors are taken into account and the sensitivity of the influencing factors is carried out. Subsequently, the gray relation analysis is used to confirm the primary influencing factors. Finally, the evaluated model is established to predict oil production rapidly. The results illustrate that the wells of CO2 WAG flooding in tight reservoirs can be divided into four types of fluid production characteristics. The production is affected by permeability, reservoir thickness, amount of sand entering the ground, amount of liquid entering the ground, gas/water ratio, the injection rate, injection pressure, permeability variation coefficient, water sensitive index, acid sensitive index, and expulsion pressure. And the primary influencing factors are the amount of sand entering the ground, reservoir thickness, and amount of liquid entering the ground. The oil production can be predicted quickly based on the relation between production and comprehensive evaluation factor of production. The average relative error between the predicted results and the actual production is 8%, which proves the reliability and accuracy of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.