Abstract

The entanglement dynamics of a pair of three-level V-type atoms decaying spontaneously in a common vacuum reservoir is investigated. Under the condition that the decaying transitions in the atoms have parallel dipole moments, the effect of coherences induced by spontaneous emission is considered in the atomic dynamics. We show that vacuum-induced coherence (VIC) and collective effects in atomic decay play a significant role in the creation of entanglement. By using negativity as a measure of entanglement, we study the time evolution of entanglement for initial separable and generalized Dicke states as well as maximally entangled qutrit states. We show that the effects of VIC enhance the production of entanglement from initial separable states of the atoms. We also show that the entanglement can be protected in steady-state for atoms evolving from initial entangled states. The amount of entanglement that can be preserved is more in the presence of VIC than in its absence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call