Abstract
The paper examines how temperature and strain rate influence the deformation of a porous powder billet made of an antifriction material. Copper and nickel-based alloy powders produced from industrial waste are used as the initial material. The ultimate strain in compression is established and used to calculate the mold sizes in tool development. Ambiguous temperature dependence of the mechanical and antifriction properties is obtained. Temperature and strain rate that ensure satisfactory mechanical and antifriction properties are found. Processes for producing parts from the antifriction material are proposed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have