Abstract

AbstractA few years ago, we theoretically studied the production of a stellar neutron spectrum at kT = 30 keV using a shaped proton beam impinging on a thick lithium target. Here, we first measure the proton distribution to better control the produced neutron spectrum. Then, we measure the forward-emitted angle-integrated neutron spectrum of the 7Li(p,n)7Be reaction via time-of-flight neutron spectrometry with such proton distribution. The result resembles a stellar neutron spectrum at kT = 30 keV. This method avoids in activation experiments the need for spectrum correction. In the case of spherical samples, no knowledge of the cross-section of the isotope being measured by activation would be necessary. Therefore, the present method is of interest for isotopes with unknown or poorly known cross-sections, such as branching points in astrophysics. The key point of our method is the experimental control of the proton distribution that impinges on the lithium target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.