Abstract

We have used arrays of microwave-generated microplasmas operating at atmospheric pressure to generate high concentrations of singlet molecular oxygen, O2(1Δ g ), which is of interest for biomedical applications. The discharge is sustained by a pair of microstrip-based microwave resonator arrays which force helium/oxygen gas mixtures through a narrow plasma channel. We have demonstrated the efficacy of both NO and less-hazardous N2O additives for suppression of ozone and associated enhancement of the O2(1Δ g ) yield. Quenching of O2(1Δ g ) by ozone is sufficiently suppressed such that quenching by ground state molecular oxygen becomes the dominant loss mechanism in the post-discharge outflow. We verified the absence of other significant gas-phase quenching mechanisms by measuring the O2(1Δ g ) decay along a quartz flow tube. These measurements indicated a first-order rate constant of (1.2 ± 0.3) × 10−24 m3 s−1, slightly slower than but consistent with prior measurements of singlet oxygen quenching on ground state oxygen. The discharge-initiated reaction mechanisms and data analysis are discussed in terms of a chemical kinetics model of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.