Abstract

β-Glucanase has received great attention in recent years regarding their potential biotechnological applications and antifungal activities. Herein, the specific objectives of the present study were to purify, characterize and immobilize β-glucanase from Aspergillus niger using covalent binding and cross linking techniques. The evaluation of β-glucanase in hydrolysis of different lignocellulosic wastes with subsequent bioethanol production and its capability in biocontrol of pathogenic fungi was investigated. Upon nutritional bioprocessing, β-glucanase production from A. niger EG-RE (MW390925.1) preferred ammonium nitrate and CMC as the best nitrogen and carbon sources, respectively. The soluble enzyme was purified by (NH4)2SO4, DEAE-Cellulose and Sephadex G200 with 10.33-fold and specific activity of 379.1 U/mg protein. Tyrosyl, sulfhydryl, tryptophanyl and arginyl were essential residues for enzyme catalysis. The purified β-glucanase was immobilized on carrageenan and chitosan with appreciable yield. However, the cross-linked enzyme exhibited superior activity along with remarkable improved thermostability and operational stability. Remarkably, the application of the above biocatalyst proved to be a promising candidate in liberating the associate lignocellulosic reducing sugars, which was utilized for ethanol production by Saccharomyces cerevisiae. The purified β-glucanase revealed an inhibitory effect on the growth of two tested phytopathogens Fusarium oxysporum and Penicillium digitatum.

Highlights

  • Β-Glucanase has received great attention in recent years regarding their potential biotechnological applications and antifungal activities

  • The following experiments were operated at the 5th day of incubation period, where the highest level of β-glucanase was established. β-glucanase activity and the dry biomass of A. niger were investigated at pH range 4–7 (Fig. 2B)

  • Β-glucanase productivity by A. niger was maximized through nutritional optimization bioprocess

Read more

Summary

Introduction

Β-Glucanase has received great attention in recent years regarding their potential biotechnological applications and antifungal activities. The specific objectives of the present study were to purify, characterize and immobilize β-glucanase from Aspergillus niger using covalent binding and cross linking techniques. The evaluation of β-glucanase in hydrolysis of different lignocellulosic wastes with subsequent bioethanol production and its capability in biocontrol of pathogenic fungi was investigated. The application of different hydrolytic enzymes, β-glucanase, on many lignocellulosic materials is task for production of bioethanol as a supplier of renewable e­ nergy[20]. The novelty of this work is presented by production of bioethanol and biocontrol of phytopathogenic fungi using purified fungal β-glucanase. To purify and immobilize the enzyme by covalent-binding and cross-linking techniques. To investigate the capability of β-glucanase in degradation of different lignocellulosic wastes, production of bioethanol and biocontrol of pathogenic fungi

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call