Abstract
BackgroundMaple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched-chain keto acid dehydrogenase. MSUD has several clinical phenotypes depending on the degree of enzyme deficiency. Current treatments are not satisfactory and require new approaches to combat this disease. A major hurdle in developing new treatments has been the lack of a suitable animal model.MethodsTo create a murine model of classic MSUD, we used gene targeting and embryonic stem cell technologies to create a mouse line that lacked a functional E2 subunit gene of branched-chain keto acid dehydrogenase. To create a murine model of intermediate MSUD, we used transgenic technology to express a human E2 cDNA on the knockout background. Mice of both models were characterized at the molecular, biochemical, and whole animal levels.ResultsBy disrupting the E2 subunit gene of branched-chain keto acid dehydrogenase, we created a gene knockout mouse model of classic MSUD. The homozygous knockout mice lacked branched-chain keto acid dehydrogenase activity, E2 immunoreactivity, and had a 3-fold increase in circulating branched-chain amino acids. These metabolic derangements resulted in neonatal lethality. Transgenic expression of a human E2 cDNA in the liver of the E2 knockout animals produced a model of intermediate MSUD. Branched-chain keto acid dehydrogenase activity was 5–6% of normal and was sufficient to allow survival, but was insufficient to normalize circulating branched-chain amino acids levels, which were intermediate between wildtype and the classic MSUD mouse model.ConclusionThese mice represent important animal models that closely approximate the phenotype of humans with the classic and intermediate forms of MSUD. These animals provide useful models to further characterize the pathogenesis of MSUD, as well as models to test novel therapeutic strategies, such as gene and cellular therapies, to treat this devastating metabolic disease.
Highlights
Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched-chain keto acid dehydrogenase
Maple Syrup Urine Disease (MSUD) is a genetic disorder caused by a deficiency of branched-chain keto acid dehydrogenase (BCKDH), a mitochondrial multienzyme complex responsible for the oxidative decarboxylation of branched-chain keto acids derived from branched-chain amino acids (BCAA), leucine, isoleucine and valine
75% of MSUD patients have the classic form of the disease with BCKDH activity in the range of 0–2% of normal [1]
Summary
Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched-chain keto acid dehydrogenase. Patients with MSUD, depending on the mutation, show variable degrees of enzyme deficiency leading to several different clinical phenotypes [1]. 75% of MSUD patients have the classic form of the disease with BCKDH activity in the range of 0–2% of normal [1]. These patients show markedly elevated levels of BCAA in blood and other body fluids [1]. Patients with the intermittent form of MSUD show BCKDH activity in the range of 5–20% and during the asymptomatic phase the blood BCAA levels are normal [1]. The overall incidence of MSUD in the general population is 1:185,000 [1], and in certain population groups, such as Mennonites of Pennsylvania, the incidence is estimated to be as high as 1:176 [2]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have