Abstract

Intense and collimated supersonic cluster beams have been produced by exploiting inertial focusing effects. To this goal we have developed and tested a novel focusing nozzle (focuser). Using this device with a pulsed microplasma cluster source we have obtained cluster beams with a divergence of 10 mrad and average densities of 3×1010 atoms/cm3 (2×1012 atoms/cm3 pulsed) corresponding to deposition rates of 2 nm/s at 300 mm distance from the source nozzle. With a focusing nozzle cluster thermal relaxation and mass distribution in a supersonic expansion can be controlled. We have measured the cluster transverse velocities, with extremely high precision, by characterizing the cluster beam deposition on a substrate by an atomic force microscope. Besides the relevance for the understanding of relaxation processes in expanding jets, the inertial focusing of clusters has several important consequences for the synthesis of nanostructured films with controlled structure and for all the experimental techniques requiring intense and collimated cluster beams. Due to its simplicity the focusing nozzle presented here can be used with a wide variety of cluster sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.