Abstract
β-D-Glucosidase enzymes (β-D-glucoside glucohydrolase, EC 3.2.1.21) from different Aspergillus strains (Aspergillus phoenicis, A. niger and A. carbonarius) were examined with respect to the enzyme production of the different strains using different carbon sources and to the effect of the pH and temperature on the enzyme activity and stability. An efficient and rapid purification procedure was used for purifying the enzymes. Kinetic experiments were carried out using p-nitrophenyl β-D-glucopyranoside (pNPG) and cellobiose as substrates. Two different fermentation methods were employed in which the carbon source was glucose or wheat bran. Aspergillus carbonarius proved to be the less effective strain in β-glucosidase production. Aspergillus phoenicis produced the highest amount of β-glucosidase on glucose as carbon source however on wheat bran A. niger was the best enzyme producer. Each Aspergillus strain produced one single acidic β-glucosidase with pI values in the range of pH 3.52–4.2. There was no significant difference considering the effect of the pH and temperature on the activity and stability among the enzymes from different origins. The enzymes examined have only β-glucosidase activity. The kinetic parameters showed that all enzymes hydrolysed pNPG with higher efficiency than cellobiose. This shows that hydrophobic interaction plays an important role in substrate binding. The kinetic parameters demonstrated that there was no significant difference among the enzymes from different origins in hydrolysing pNPG and cellobiose as the substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.