Abstract

Primordial SU(2) gauge fields with an isotropic background lead to the production of spin-2 particles during inflation. We provide a unified formalism to compute this effect in all of the inflation models with isotropic SU(2) gauge fields such as Gauge-flation and Chromo-Natural inflation with and without spectator axion fields or the mass of the gauge field from the Higgs mechanism. First, we calculate the number and energy densities of the spin-2 particles. We then obtain exact analytical formulae for their backreaction on the background equations of motion of SU(2) and axion fields in (quasi) de Sitter expansion, which were calculated only numerically for one particular model in the literature. We show that the backreaction is directly related to the number density of the spin-2 field. Second, we relate the number density of the spin-2 particles to the power spectrum and the energy density of the gravitational waves sourced by them. Finally, we use the size of the backreaction to constrain the parameter space of the models. We find that the tensor-to-scalar ratio of the sourced gravitational waves can at most be on the order of that of the vacuum contribution to avoid a large backreaction on slow-roll dynamics of the gauge ssand axion fields in quasi-de Sitter expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.