Abstract

We study inflation driven by a dilaton and an axion, both of which are coupled to a SU(2) gauge field. We find that the inflation driven by the dilaton occurs in the early stage of inflation during which the gauge field grows due to the gauge-kinetic function. When the energy density of magnetic fields catches up with that of electric fields, chromonatural inflation takes over in the late stage of inflation, which we call delayed chromonatural inflation. Thus, the delayed chromonatural inflation driven by the axion and the gauge field is induced by the dilaton. The interesting outcome of the model is the generation of chiral primordial gravitational waves on small scales. Since the gauge field is inert in the early stage of inflation, it is viable in contrast to the conventional chromonatural inflation. We find the parameter region where chiral gravitational waves are generated in a frequency range higher than nHz, which are potentially detectable in future gravitational wave interferometers and pulsar-timing arrays such as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO), evolved Laser Interferometer Space Antenna (eLISA), and Square Kilometer Array (SKA).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call