Abstract

We study the problem of expanding the product of two Stanley symmetric functions $F_w·F_u$ into Stanley symmetric functions in some natural way. Our approach is to consider a Stanley symmetric function as a stabilized Schubert polynomial $F_w=\lim _n→∞\mathfrak{S}_{1^n×w}$, and study the behavior of the expansion of $\mathfrak{S} _{1^n×w}·\mathfrak{S} _{1^n×u}$ into Schubert polynomials, as $n$ increases. We prove that this expansion stabilizes and thus we get a natural expansion for the product of two Stanley symmetric functions. In the case when one permutation is Grassmannian, we have a better understanding of this stability. Nous étudions le problème de développement du produit de deux fonctions symétriques de Stanley $F_w·F_u$ en fonctions symétriques de Stanley de façon naturelle. Notre méthode consiste à considérer une fonction symétrique de Stanley comme un polynôme du Schubert stabilisè $F_w=\lim _n→∞\mathfrak{S}_{1^n×w}$, et à étudier le comportement de développement de $\mathfrak{S} _{1^n×w}·\mathfrak{S} _{1^n×u}$ en polynômes de Schubert lorsque $n$ augmente. Nous prouvons que cette développement se stabilise et donc nous obtenons une développement naturelle pour le produit de deux fonctions symétriques de Stanley. Dans le cas où l'une des permutations est Grassmannienne, nous avons une meilleure compréhension de cette stabilité.

Highlights

  • In [19], Stanley defined a homogeneous power series Fw in infinitely many variables x1, x2, . . . , to compute the number of reduced decompositions of a given permutation w

  • We are interested in the problem of expanding the product of two Stanley symmetric functions Fw · Fu into Stanley symmetric functions

  • The hope is that we can explain the coefficients in terms of D(w) and D(u), as a generalized Littlewood-Richardson rule for Schur functions

Read more

Summary

Introduction

In [19], Stanley defined a homogeneous power series Fw in infinitely many variables x1, x2, . . . , to compute the number of reduced decompositions of a given permutation w. We consider a Stanley symmetric function as a stabilized Schubert polynomial [14]: Fw = lim S1n×w. Notice that as n increases, we keep all the permutations appearing in the previous case and add some new permutations (the underlined terms) In this example, the expansion stabilizes after n = 2, i.e., we do not add new permutations for n > 2, i.e., S1n×3241 · S1n×4312 =S1n×642135 + S1n−1×265314 + S1n−1×2743156 + S1n−1×356214 + S1n−1×364215 + S1n−1×365124 + S1n−1×462315 + S1n−1×561324 + S1n−2×2375416 + S1n−2×246531 + S1n−2×256341. Let us recall the combinatorial definition of Schubert polynomials introduced in Theorem 1,1 [4].

Schubert polynomial times a Schur polynomial
Maximal transition tree
MT-move in terms of diagrams
Other Stable Expansions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call