Abstract
Online product reviews are valuable resources to collect customer preferences for product improvement. To retrieve consumer preferences, it is important to automatically extract product features from online reviews. However, product feature extraction from Chinese online reviews is challenging due to the particularity of the Chinese language. This research focuses on how to accurately extract and prioritize product features and how to establish product improvement strategies based on the extracted product features. First, an ensemble deep learning based model (EDLM) is proposed to extract and classify product features from Chinese online reviews. Second, conjoint analysis is conducted to calculate the corresponding weight of each product feature and a weight-based Kano model (WKM) is proposed to classify and prioritize product features. Various comparative experiments show that the EDLM model achieves impressive results in product feature extraction and outperforms existing state-of-the-art models used for Chinese online reviews. Moreover, this study can help product managers select the product features that have significant impact on enhancing customer satisfaction and improve products accordingly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.