Abstract

The task of product feature extraction is to find product features that customers refer to their topic reviews. It would be useful to characterize the opinions about the products. We propose an approach for product feature extraction by combining lexical and syntactic features with a maximum entropy model. For the underlying principle of maximum entropy, it prefers the uniform distributions if there is no external knowledge. Using a maximum entropy approach, firstly we extract the learning features from the annotated corpus, secondly we train the maximum entropy model, thirdly we use trained model to extract product features, and finally we apply a natural language processing technique in postprocessing step to discover the remaining product features. Our experimental results show that this approach is suitable for automatic product feature extraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.