Abstract

Efficient drug delivery into tumor cells while bypassing many biological barriers is still a challenge for cancer therapy. By taking advantage of the palladium (Pd)-mediated in situ activation of a prodrug and the glucose oxidase (GOD)-based β-d-glucose oxidation reaction, we developed a multisynergistic cancer therapeutic platform that combined doxorubicin (DOX)-induced chemotherapy with GOD-mediated cancer-orchestrated oxidation therapy and cancer starvation therapy. In the present work, we first synthesized DOX prodrugs (pDOXs) and temporarily assembled them with β-cyclodextrins to reduce their toxic side effects. Then, a nanoreactor was constructed by synthesizing Pd0 nanoparticles in situ within the pores of mesoporous silica nanoparticles for the conversion of pDOX into the active anticancer drug. Furthermore, GOD was introduced to decrease the pH of the tumor microenvironment and induce cancer-orchestrated oxidation/starvation therapy by catalyzing β-d-glucose oxidation to form hydrogen peroxide (H2O2) and gluconic acid. Our study provides a new strategy that employs a cascade chemical reaction to achieve combined orchestrated oxidation/starvation/chemotherapy for the synergistic killing of cancer cells and the suppression of tumor growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.