Abstract

In cells, only properly folded procollagen trimers are secreted from the endoplasmic reticulum (ER), while improperly folded abnormal procollagens are retained within the ER. Ascorbic acid is a co-factor in procollagen hydroxylation, which in turn is required for trimer formation. We examined chaperone proteins which bound to procollagen in the absence of ascorbic acid, a model which mimics the human disease scurvy at the cellular level. We found that both prolyl 4-hydroxylase (P4-H)/protein disulfide isomerase (PDI) and HSP47 bound to procollagen in the absence of ascorbic acid. However, the binding of PDI to procollagen decreased when HSP47 was co-transfected, suggesting that HSP47 and PDI compete for binding to procollagen. These data indicate that P4-H/PDI and HSP47 have cooperative but distinct chaperone functions during procollagen biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.