Abstract

This paper presents an approach to computing the shear flow curve from torque–rotational velocity data in a Couette rheometer. The approximation techniques in shear rate calculation are generally dictated by the radius ratio between coaxial cylinders and the rheological behaviour of fluid tested. Here, the approach consists in analysing the sheared material as a Bingham fluid and computing an average shear rate when the fluid in the cylindrical gap is partially and fully sheared. We focus in particular on the applicability of the Bingham approximation in shear rate calculation. First, the approach is assessed by examining synthetic data generated with Newtonian, non-Newtonian and yield stress materials with known properties, varying the gap radius ratio. The results, which are compared with commonly used techniques in shear rate calculation, prove the relevance of the proposed approach. Finally, its efficiency is examined by applying it to process Couette data of yield stress fluids taken from published works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.