Abstract
The determination of the shear rate in bubble column and airlift bioreactors is an important question from both the perspective of cell damage and the correlation of hydrodynamic parameters in non-Newtonian fluids in these contractors. In the context of correlating hydrodynamic parameters in non-Newtonian fluids, a common approach involves assuming that there exists an average shear rate in the column that is proportional to the superficial gas velocity. This average shear rate is then used to evaluate an effective viscosity of the non-Newtonian fluid that is subsequently used to quantify the fluid's rheological behavior in correlation. Contrary to a recent communication, this report illustrates that this approach, which has mainly been applied to bubble columns, can also be applied to external loop airlift contractors, replacing the superficial gas velocity by the superficial gas velocity by the superficial gas velocity supplied to the riser of the contractor. This extension is based upon consideration of the relevant characteristic velocity in the active zone (i.e., the riser section) of the reactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.