Abstract

This study was conducted to investigate the optimal conditions of collagen extraction from scales of yellowfin tuna (Thunnus albacares) using surface response methodology. Four independent variables of NaOH concentration and pretreatment fime in alkali pretreatment and enzyme concentration and treatment time in enzyme hydrolysis were used to predict a model equation for the collagen yield. The determinant coefficient (<TEX>$R^2$</TEX>) for the equation was 0.906. The values of the independent variables for the maximum yield were 0.32 N NaOH, 16.38 h alkali pretreatment time, 0.18% enzyme concentration, and 31.02 h enzyme treatment time. In the physicochemical properties of tuna scale collagen, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of tuna scale collagen showed the same migration distances as that of calf skin collagen. The amide A, I, II, and III regions of tuna scale collagen in Fourier transform infrared measurements were shown in the peaks of 3,414 <TEX>$cm^{-1}$</TEX>, 1,645 <TEX>$cm^{-1}$</TEX>, 1,553 <TEX>$cm^{-1}$</TEX>, and 1,247 <TEX>$cm^{-1}$</TEX>, respectively. The amount of imino acids in tuna scale collagen was 18.97% and the collagen denaturation temperature was <TEX>$33^{\circ}C$</TEX>. The collagen solubility as a function of NaCl concentration decreased to 4% NaCl (w/v) and the collagen solubility as a function of pH was high at pH 2-4 and sharply decreased from pH 4 to pH 7. Viscosity of the collagen solution decreased continuously until <TEX>$30^{\circ}C$</TEX> and this decreasing rate slowed in the temperature range of <TEX>$35-50^{\circ}C$</TEX>.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.