Abstract
Innate immunity is critically dependent on the rapid production of interferon in response to intruding viruses. The intracellular pathogen recognition receptors RIG-I and MDA5 are essential for interferon induction by viral RNAs containing 5′ triphosphates or double-stranded structures, respectively. Viruses with a negative-stranded RNA genome are an important group of pathogens causing emerging and re-emerging diseases. We investigated the ability of genomic RNAs from substantial representatives of this virus group to induce interferon via RIG-I or MDA5. RNAs isolated from particles of Ebola virus, Nipah virus, Lassa virus, and Rift Valley fever virus strongly activated the interferon-beta promoter. Knockdown experiments demonstrated that interferon induction depended on RIG-I, but not MDA5, and phosphatase treatment revealed a requirement for the RNA 5′ triphosphate group. In contrast, genomic RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus did not trigger interferon induction. Sensitivity of these RNAs to a 5′ monophosphate-specific exonuclease indicates that the RIG-I-activating 5′ triphosphate group was removed post-transcriptionally by a viral function. Consequently, RIG-I is unable to bind the RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus. These results establish RIG-I as a major intracellular recognition receptor for the genome of most negative-strand RNA viruses and define the cleavage of triphosphates at the RNA 5′ end as a strategy of viruses to evade the innate immune response.
Highlights
The efficacy of the innate immune response against virus infections is highly dependent on a rapid production of interferons and other cytokines
Genomic RNAs from highly virulent nonsegmented NSVs activate the IFN system We tested the genomic RNAs of Zaire Ebola virus (ZEBOV, family Filoviridae) and Nipah virus (NiV, family Paramyxoviridae) for the capability to activate an innate immune response
RNA isolated from influenza A virus (FLUAV) particles was used as positive control
Summary
The efficacy of the innate immune response against virus infections is highly dependent on a rapid production of interferons and other cytokines. Prominent examples are influenza viruses (family Orthomyxoviridae), Ebola virus (Filoviridae), rabies virus (Rhabdoviridae), Nipah virus (Paramyxoviridae), Lassa virus (Arenaviridae), and several members of the Bunyaviridae family e.g. Rift Valley fever virus, Hantaan virus, or Crimean-Congo hemorrhagic fever virus (Table 1). These pathogens can cause rapid, systemic and often fatal illnesses which are characterized either by a fulminant pneumonia and multi-organ failure or by a severe hemorrhagic fever [6,7,8,9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.