Abstract

A combination of high rates of mutation and replication, coupled with strong natural selection, ensures that RNA viruses experience rapid genotypic and phenotypic evolution. Such a ‘fast-forward’ evolution enables viruses to rapidly adapt to new host species, evade host immune responses, and to develop resistance to anti-viral drugs. Similarly, rapid evolution allows viruses to attain new levels of virulence, defined as the ability to cause severe disease in hosts. We hypothesize that distinct viral groups share genetic determinants that modulate virulence that have been acquired through convergent evolution. Thus, common patterns reflecting changing virulence-related specific viral groups could be detected. The main goals for this project are (1) to understand how genetic and phenotypic diversity can be generated among different viral groups by analyzing the variation patterns and determining the selective forces behind them (impact in viral fitness) and (2) to understand how fixed mutations can modulate virulence within different viral groups by performing comparison of strains with differing virulence within a longitudinal timescale. The subject of the study is key emerging and re-emerging virus families of medical importance. Such groups include: Coronaviridae (severe acute respiratory syndrome and Middle East respiratory syndrome-associated coronaviruses), Picornaviridae (Hepatitis A virus), Flaviviridae (Yellow fever, West Nile, Hepatitis C, Dengue, and Zika viruses), Togaviridae (Rubella and Chikungunya virus), Bornaviridae (Borna-disease virus), Filoviridae (Ebola and Marburg viruses), Paramyxoviridae (Measles, Nipah, and Hendra viruses), Rhabdoviridae (Lyssaviruses), Arenaviridae (Lassa virus), Bunyaviridae (Hanta- and Crimean-Congo hemorrhagic fever viruses), and Orthomyxoviridae (Influenza A viruses). Viral genomes collected at different time points, different hosts (human and their most closely related animal reservoirs) and different locations will be compiled. Extensive molecular evolutionary analyses will be carried out to infer gene expansion/contraction within groups, rates of evolution, and changes in selection pressure, including the detection of positive selected genes and sites (adaptive evolution). Positively selected sites will be mapped onto the viral protein structures to reveal their impact on function, and hence the location of potential virulence determinants. Virulence changes among particular viral strains and types will be defined and measured according to definitions based on an increase in: (1) transmissibility, (2) host tropism, (3) immune evasion, (4) morbidity and mortality, (5) drug resistance, and by the incorporation of epidemiological data to determine whether high or low virulence strains within different hosts and localities are spreading most efficiently in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call