Abstract
ABSTRACTTwo different reduced graphene oxides (rGOs) with similar concentration of oxygen and defects and differences in exfoliation were prepared to produce the rGO/thermoplastic polyurethane nanocomposites by solution blending (SB) and melt compounding (MC). Morphology, electrical, and dielectric properties were studied. Large agglomerates have been observed for the composites produced by SB and discrete and low agglomerated rGO particles in the case on the composites produced by MC. These morphological differences justify the observations in hardness, electrical conductivity, and even in the dielectric properties. The composites do not follow Jonscher's universal power law (UPL) and a linear trend between UPL factors (Log A vs n) has been observed for composites produced by SB, however, no trend is observed in the composites produced by MC, being the first time observed. Differences in the tunneling effect and breakage of H‐bonds within the polymer can be suggested from the dielectric relaxation characterization. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47220.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.