Abstract

This paper studies influence of the process temperature and time on the properties of the compacts made of Ag-SiO2 powder by the pulsed electric current sintering (PECS). Silica particles doped with Ag nanoparticles were prepared by modified Stöber method, and calcinated at 573 K in air resulting in average silica particle size of ~1.1 µm and agglomerate size up to 32 µm. There was about 7 wt.% of silver in the structure and the diameter of the silver particles on the silica carriers was 30 ±7 nm on average. The composite powder was sintered into porous compacts by PECS at 873, 973, 1073, or 1173 K for 10, 20, or 30 min under pressure of 50 MPa. Samples were characterized by SEM, XRD, UV-vis-spectrometer, and laser diffraction. During PECS compaction grain growth of silver particles was observed and the measured average size of Ag in 873 K and in 1173 K samples were 65 nm and 170 nm, respectively. The porosity of the materials did not show remarkable change, as the relative density ranged from 76 to 79 %. Thus, it is possible to produce porous silica based materials with controlled Ag-nanoparticle size by PECS. These materials may be optimized for, e.g., different kinds of antibacterial filters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call