Abstract

The present work is focused on the nano-Hydroxyapatite (nHAp) synthesis with two different Indian breed Aseel and Kadaknath eggshells. The alloplast implants were developed through the foam replica method with polyurethane 45-PPI as a porous template. The synthesized nHAp was characterized by Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The FE-SEM images of the nHAp showed the one dimensional clustered nanoparticles and the X-ray diffraction spectrum confirms that the major phase was hydroxyapatite with a small trace of β-tricalcium phosphate. The maximum compression strength of the sample was 5.49 ± 0.12 MPa which is in the range of the compression strength of human trabecular bone. The thermal and degradability studies results confirmed that these are highly stable and provides necessary a resorption needed for new bone tissue formation. Besides, the antimicrobial activity against tested human microbiome are satisfactory and the cell viability towards MG 63 human osteoblast-like cells provides a potential pathway for developing the nHAp implants for bone tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call