Abstract

Scaffolding system plays an important role in the development of artificial bone for treatment of defective or diseased bone tissue. In the present work, we have developed microspheres (COS-Ag-Alg-HA) containing chitooligosaccharide (COS) coated silver nanoparticles (Ag NPs) with alginate (Alg) and hydroxyapatite (HA) as bone graft substitutes. The developed microspheres were characterized through various analytical techniques such as UV–visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, field emission scanning electron microscopy with EDX and evaluated the mechanical strength by using universal testing machine. In addition to this, antimicrobial activity and biocompatibility of the developed microspheres were evaluated with pathogenic microbes and osteoblast-like cells, respectively. Results suggest that microspheres are rigid, and strong chemical interactions were observed between the materials. The size of the microspheres was ranging from 1.5 ± 0.5 to 4.0 ± 0.5 mm. Significant microbial inhibition was observed against Staphylococcus aureus, and the developed microspheres are biocompatible with osteoblast-like cells. Based on the aforementioned finding results, the developed microsphere is proposed to be a potential candidate for bone tissue repair and regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call