Abstract
The SET and RESET switching kinetics of Ag–GeSx-based ECM memory cells are experimentally investigated. The results were qualitatively and quantitatively reproduced by our simulation model, accounting for a tunneling gap between the tip of the growing filament and the active electrode. Key processes are the nucleation, the electron transfer at the interfaces, and ionic hopping in the electrolyte. Current–voltage sweeps and pulse measurements were used to study the switching kinetics with respect to variety of factors like voltage, current, resistance, time, electrolyte thickness, and stoichiometry. Multilevel operations through the adjustability of the ON resistance by current compliance and sweep rate were confirmed. The SET kinetics for low voltages was limited by the nucleation process. SET time and SET voltage strongly depend on the Ag-ion normalized concentration in the electrolyte. The RESET behavior was mostly independent of the current compliance and the ON resistance. However, lower ON resistance...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.