Abstract

New aromatic poly(ether ether ketone imide)s, [PEEKimide]s, were synthesized successfully from 1,3-bis-4′-(4″-aminophenoxy benzoyl) benzene and various commercially available aromatic dianhydrides, such as pyromellitic dianhydride (PMDA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (BPDA), 4,4′-oxydiphthalic anhydride (OPDA) and 4,4′-(hexafluro isoproylidene) diphthalic anhydride (HFDA), by two step polycondensation method. These PEEKimides were characterized by FT-IR, solubility in organic solvents, inherent viscosity, DSC, TGA and WXRD. Inherent viscosities of the precursor poly(ether ether ketone amic acid)s were in the range of 0.23–0.40 dl/g in DMF, indicating formation of moderate to high molecular weights. These poly(ether ether ketone imide)s showed good solubility in polar aprotic solvents such as N,N-dimethylacetamide (DMAc), N-methyl 2-pyrrolidone (NMP), N,N-dimethylformamide (DMF) and dimethyl sulphoxide (DMSO) and had glass transition temperatures in the range 245–279°C. Poly(ether ether ketone imide)s showed no weight loss below 280°C; temperatures for 10% weight loss (T10) were in the range of 406–483°C and char yields at 800°C were 17–34%, indicating their good thermal stability. All these poly(ether ether ketone imide)s were amorphous in nature, as per patterns of WXRD which exhibited diffuse broad halos at (2θ = 10–30°) and amorphous nature was reflected in polymer’s good solubility in common organic solvents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.