Abstract
Fin-type field-effect transistors (FinFETs) are promising substitutes for bulk CMOS for nanoscale technologies. In this paper, the viability of a mixed-signal design for FinFET-based technologies using a nanoscale current-starved voltage controlled oscillator (VCO) is investigated. Design issues are analyzed and a comparison between a CMOS VCO and a FinFET-based VCO is presented. The figures-of-merit used for comparison are center frequency and frequency–voltage ( ${f}$ – ${V}$ ) characteristics under process variation. Models are developed for the ${f}$ – ${V}$ characteristics of both the CMOS and FinFET VCOs. In addition, width quantization-aware modeling has been performed for the FinFET-based VCO using a polynomial metamodel, which can be used for further optimization. The quantization aware modeling is highly accurate as evident from a correlation coefficient ${R^{2}}$ of 0.999 and root mean square error of 6.2 MHz. The FinFET VCO has $5.5 {\times }$ faster oscillation frequency with 2.6% variability as opposed to 19.7% for the CMOS VCO. To the best of the authors’ knowledge, this is the first paper that examines FinFET technology with respect to process variation in mixed signal designs at the circuit level, and presents a quantitative as well as qualitative comparison between CMOS and FinFET technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.