Abstract

Rapid thermal processing (RTP) of silicon using transient linearly ramped-temperature saw-toothed and triangular thermal cycles has been evaluated by characterization of the process uniformity and slip dislocation line patterns for a wide range of process parameters. Rapid thermal oxidation was chosen as the process vehicle for these studies. The process uniformity and slip dislocation line patterns are strongly affected by both the transient and steady-state segments of the thermal cycles. The strong dependencies of the process uniformity and slip dislocation lines on the thermal cycle parameters suggest that the overall performance of a RTP reactor must be specified not only under steady-state thermal conditions, but also for controlled transient thermal cycles. Transient ramped-temperature RTP cycles with medium-to-high peak process temperatures (i.e. T/sub max/=1100 degrees -1150 degrees C) were found to be the optimal process conditions for growing thin gate oxides in the range of 60-120 AA with superior process uniformity and minimum slip dislocation line generation. The results of this work provide insight and useful methodology for process optimization in order to improve process uniformity, minimize generation of slip dislocation lines, and obtain good device electrical characteristics. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.